
Admin
Typewriter
PSDK Programmers Ref.
Products:
-SG100
-SG100 EVO-USB
-SG100 EVO-USB CERT

WINDOWS VERSION
PRE-BUILT DRIVERS

3

Contents
General About the SG100 Security Generator ...4
The SG100 Hardware ..4
The Noise Driver Thread ...4
Buffers and Noise Processing... 6
SG100 Timers..7
API Call for Reading Data ...8
Integrating SG100 in Applications.. 9
SG100 Test Programs ..10
SG100 API Calls ..11
List of Errors ..12
List of major error codes that apply to the SG100 drivers.....................................12
Appendix A ..15
Appendix B ..17

4

General About the SG100 Security
Generator

The SG100 is designed to be a reliable and versatile device for
cryptographic and statistical applications. Care and effort have
gone into making the SG100 performing well under all possible
operating conditions. In the unlikely situation that the device
fails, thorough statistical and electrical testing will detect the
situation, and report an error code.
This manual covers the general properties of the SG100
Security Generator from the system programmer’s point of
view. Most of the automatic checks that have been built into
the SG100 drivers is presented and explained. Note that the
cryptologic and statistical technology necessary for writing a
device driver for a different platform is not included in this
manual.
The current version of the SG100 driver support multiple
SG100 generators. You will have to provide a separate serial
port for each SG100 generator.

The SG100 Hardware
The SG100 hardware is basically a noise generating process and
an amplifier. The noise originates from a Zeener diode. After
amplification a stream of noise is sent to the UART of the
computer. The UART samples the noise stream into 8-bit bytes
which is put into a buffer.
More information about the SG100 hardware can be found on
Protego Information’s Webb-server, including all kinds of
measurements and tests.
See http://www.protego.se/

5

The Noise Driver Thread
The calling application must provide an execution thread for
the SG100 hardware. Single thread applications must have this
thread externally provided. If two applications are using the
SG100 at the same time only one of the applications may
provide a thread for the hardware, or the thread must be
externally provided.
The noise driver thread opens the SG100 serial port and read
the noise stream from the hardware. You can have only one
noise driver thread for each serial port. If you try to open a
second driver thread for an already open serial port the SG100
API will report an error-code.
You can not open the serial port directly. The SG100 driver is
an integrated part of the SG100.
Inside the driver the noise is tested statistically. As the input is
completely unprocessed there is no difficulty to compute a
number representing input quality. We have chosen to compute
the information speed of the input, calculated on 8-bit-bytes,
with a sample size of 32,000 bytes. Other tests are possible.

Totalbytes = 32,000;
P[i] = Frequency[i]/Totalbytes;
Inf_ = ∑∑∑∑(-P[i]log(P[i])) for all 256 bytes i;
Inf_Rate = 100.00%*Inf_ / 8.00 / log(2.00);

If we have an input with low quality noise the situation is
handled by reading noise twice. The two strings are mixed
together using a function independent to other processing in
the system. As the noise stream can have a maximum of 100%
information rate this trick works for information rates down to
50%.
More specifically is the noise read once if the input
information rate 96%≤Inf_Rate≤100%, two times if
93%≤Inf_Rate≤96%, and tree times if 70%≤Inf_Rate≤93%. For
an information rate less than some limit, 70%, the device driver
sets an error condition.

6

The driver also checks for low input voltage, by applying a
special test. The SG100 is powered from two signal pins of the
serial port, and there can be a situation where insufficient
power is available.
The simplest error is that the SG100 has been disconnected. In
that case the driver releases a watchdog semaphore, but takes
no error action. If the application checks when the watchdog
semaphore is released and notifies the user, the user may
connect the SG100 again. Processing is then resumed. No
message of any kind is forwarded to processes reading noise.
Example code for starting the noise driver thread is given in
Appendix A. This code is also provided in compiled form
(console application):

DRIVER COM1 baudrate
(Note: This program do not print progress information. In the case of an
error, the error-code will be printed.)

There is also example code on the source distribution media.
You should note that, in the current version of the software,
the library ISAF_N1.DLL is loaded using run-time dynamic
linking by the driver DLL and that this affect applications were
load-time dynamic linking is asked for. If you wish to load the
SG100 libraries into your EXE, using load-time dynamic
linking, contact us and we will fix it.

Buffers and Noise Processing
After the noise processing, the noise is put in an output buffer.
In the event that the SG100 driver is idle, you may read a
continuous string of a length of up to 64,000 bytes without
waiting for the SG100 hardware to produce the noise. This
buffer has been installed as some applications may need noise
very quickly.
We have seen that action is taken to guarantee a high input
information rate.

7

In the ISAF_N1 driver the noise is processed to simulate 100%
noise quality. Different types of cryptographic functions may
be considered for this processing, but as we know that the
input has a high information rate, a reasonable level of
computing has been selected. Note that the minimum input
information rate is 96%, so simulating the last few percentages
is not very difficult.
The streamcipher of the SG100 contains shift registers with
maximum length feedback. The length of the longest register is
long enough to make exhaustion of the period computationally
infeasible. As maximum length shift registers have good
(mathematically proven) statistical properties, it is not possible
to find any simple (non-cryptographic) statistical property in
the SG100 output. The output from the shift registers is
concealed by a non-linear function.
A part of the key to the streamcipher is reseeded approximately
every three minutes (every ten minutes for an idle device). The
noise necessary for this reseeding is consumed, and is not
reused by the API. By updating the seed of the streamcipher at
enough short intervals we can enforce that even the most
complex (cryptographic) attacks also will fail.
It is reasonably to conclude that the (maximum) 4% deficiency
of input information rate can not be detected or exploited by
any means.

SG100 Timers
When you first start up the SG100 generator & drivers you will
find that the output from the ISAF_N1 driver is blocked for
several seconds. Under this period of time no noise can be
read form the SG100 system (the ISAF_N1.DLL).
When the SG100 system first starts up the noise driver thread
it is reading noise from the hardware and are updating the
noise buffer. The noise quality improves until it reach a
maximum. This may occur in only 2-3 iterations, maybe it takes
a little longer.

8

It is essential that the output buffer is thoroughly randomized
before any noise is read from the ISAF_N1 driver. Some
applications, such as cryptographic applications, need very high
quality noise. Generating a cryptographic key too quickly is a
mistake that could have devastating security effects. The default
start-up delay is minimum 25 seconds or minimum eight
iterations. For demanding applications it is recommended to
signal the driver by issuing a call to ”Release_UpdateLock”
that sets the update time to 70 seconds and releases a possibly
pending driver thread, refreshing the buffer.
The noise reading/testing is restarted every ten minutes even if
no calls are made to the SG100 noise system. This assures that
the SG100 driver always returns fresh random bits.
The noise driver makes use of timers to control the way the
noise is processed. In an initial period (25 minutes) the noise is
read more than once as an extra precaution. This time period is
restarted if the SG100 is reported to be disconnected.
The timers also controls when the test for low supply power
should be applied. The driver also checks for low power supply
immediate before the SG100 is shut down to the low-power
state.
When the SG100 driver runs out of random bits, and the driver
need more random input from the SG100 hardware, the driver
returns noise three times following each other. Some
applications maybe needs only little noise. This method lets the
SG100 driver to return a completely random string (exact 100%
information rate) with light load.
If the application is in need of very much noise we will have to
depend on computations in the SG100 system for hiding any
statistical deficiency.

API Call for Reading Data
To read the noise from the SG100 Security Generator you open
ISAF_N1.DLL and initializes the driver. This works if the

9

noise reading thread is properly connected to ISAF_N1.DLL
already. You are recommended to use the same DLL file, as
ISAF_N1 has some shared memory.
If you want more noise than available in the noise buffer the
call will terminate when the number of bytes requested has
been read from the hardware.
The call (* getnoise)(.. .) and (* updatelock)(.. .) is intended for multi-
threaded applications, and can be called simultaneously from
several applications or threads. Example code for connecting to
the ISAF_N1.DLL may be found in Appendix B. This code is
included in the compiled program (console application).

NOISE Output_file_name Number_of_bytes

and
LOTTO Total_balls Balls_to_draw Extraballs_to_draw Iterations

Integrating SG100 in Applications
Some applications may need large amounts of noise. As the
SG100 is too slow, except for lottery and cryptographic
applications, a much faster way of generating noise is asked for.
We must then use a pseudo random number generator (P-
RNG).
You integrate a P-RNG with the SG100 by generating the
”initial seed” for the P-RNG with the SG100 and then take the
noise from the P-RNG.
Demanding applications could use a combination of two
different P-RNGs to enhance the output. You should reseed
your P-RNG at regular and irregular intervals, i.e. when noise is
available from the SG100.
Some demanding applications can detect and be influenced by
deficiencies in a P-RNG. By reseeding the P-RNG at
sufficiently short intervals, any deficiencies in your P-RNG will
”move around” and the influence on your application will
diminish in the long run.

10

We do not include any API for this functionality, such as
accessibility to the stream-cipher, as it could circumvent our
communication with our customers, maybe leading some
customers to believe that the SG100 is a pseudo random
number generator.

SG100 Test Programs
The test programs are console applications used during testing
and evaluation of previous (beta) versions of the SG100
Security Generator hardware. On the SG100 distribution media
there is a file \TEST\TESTING.TXT that has example output
from all test programs.
It is possible, with the test programs, to read the hardware
directly, write the output to a file, and then apply customer-
written hardware tests. The DOWNLOAD program is intended for
test purposes only. Do not use DOWNLOAD in your application!

DOWNLOAD COM1 Baudrate Filename Number_of_bytes

The information rate, a simple and useful measure of output
quality, can be measured with the

BYTESTAT COM1 Baudrate

program. A more accurate value (16 bit statistics) is obtained
with

WORDSTAT COM1 Baudrate

Please note that this test must be run for a long time—about
50 000 000 words...
If you wish to investigate which baudrates that can be used call

BAUD COM1

11

that do a simple test for several baudrates.
The simplest test is to look at the random output string. Run
BITPRINT COM1 Baudrate

and take a guess of the output!

12

Sg100 API Calls
ulong Test_Port(char *Port, DWORD Baudrate, long *Testresult);

Returns a code if requested baudrate is accepted by the SG100 system.
Also calculates information speed of the output for the baudrate.
Intended use: To optimise the SG100 baudrate to end-customer's
computer/COM-port.
void Execute_Noise_Loop(char *Port, DWORD Baudrate);

Executes the noise DLL, and connects to ISAF_N1.DLL.
void End_Noise_Loop();

A call here shuts the SG100 system off, and sets an error condition to all
pending calls.

void DLL_Setup(ulong *Error_Code, ulong *Exception);

Call here to open ISAF_N1.DLL
void Release_UpdateLock(ulong *Error_Code, ulong *Exception);

A call here tells the SG100 system to refresh buffers. The refreshing
takes place asyncronuously, at some later time.
void Get_Noise(uchar *Byte_PTR, ulong Bytes, ulong *Error_Code, ulong
*Exception);

The call returns a string, of specified length, of random bytes, to
memory buffer at address Byte_PTR.
ulong SG100_Random(ulong Select_Range, ulong *Error_Code, ulong
*Exception);

This call returns a random integer in the range [0..(Select_Range-1)]
(inclusive)for a specified range Select_Range. The distribution is flat, and
the conversion probabilities is exact. Select_Range may be any ulong
unsigned number, except zero.

13

List of Errors
If a call succeeds it returns with Error_Code of 0 and
Exception 0. If this is not the case any code is to be expected
as an error code.
If some problem has been detected inside one of the SG100
drivers it will return with a non-zero Error_Code. The
Exception code may then be decoded:

#define REG_EXCEPTION 0x09000000
ulong Major_err_code = 0;
ulong Minor_err_code = 0;
if (Exception >= REG_EXCEPTION && Exception < REG_EXCEPTION + 0x80000L)
{
 Major_err_code = Exception - REG_EXCEPTION;
 Minor_err_code = Major_err_code & 255L;
 Major_err_code = (Major_err_code >> 8) & 511;
}

The value Major_err_code is the type of error that has
occurred and Minor_err_code is a serial count within each
error group. Together the numbers specify exactly what is
wrong.

List of major error codes that apply to the
SG100 drivers.

#define XMSG_MEMORY_MANAGEMENT_ERROR 0x0000007DL

Serious memory problem. Reboot your computer.
#define XMSG_CANNOT_ALLOCATE_MEMORY 0x0000007EL

Out of memory. This is serious, reboot your computer.
#define XMSG_CANNOT_ALLOCATE_INTERNAL_MEMORY 0x0000007FL

Out of memory. This is serious, reboot your computer.
#define XMSG_ERROR_IN_INTERNAL_MEMORY 0x00000080L

Serious memory problem. Reboot your computer.
#define XMSG_CPU_MEMORY_TRAP 0x00000081L

14

Something unexpected has occurred.
#define XMSG_SYNC_SYSTEM_NOT_OPERATING 0x00000082L

The synchronisation system is not working. You must close the SG100
system.
#define XMSG_INSERT_NOISEBLOCK_TOO_SMALL 0x00000092L

Driver should not insert a noise block less then five words. (This occurs
only if the DRV_DLL.DLL is in error.)
#define XMSG_INSERT_CIPHERTEXTBLOCK_TOO_SMALL 0x00000093L

The ciphertext block is to small. Call with a larger ciphertext block. (The
call generating this error is not documented here.)

#define XMSG_CANNOT_OPEN_IO_PORT 0x00000094L

Port is most probably in use. The port could also be non-existing. Check
baudrate.
#define XMSG_CANNOT_READ_IO_PORT_STATUS 0x00000095L

Get status call failed. Most probably an invalid port specification.
#define XMSG_CANNOT_SET_IO_PORT_STATUS 0x00000096L

Can not alter the port settings for the port. Check if the port has the
proper driver.
#define XMSG_IO_PORT_ERROR 0x00000097L

General problems with the serial port.

#define XMSG_BAD_NOISE_QUALITY 0x00000098L

There is a problem with the SG100 hardware. Please erase any strings of
noise generated immediately before this error. Check the SG100
hardware on a different computer, using the test programs. Check the
serial port hardware using a back-loop connector and service software.
#define XMSG_NOISE_BUFFER_NOT_INITIALIZED 0x00000099L

The buffer is not initialised. The calls are coming in the wrong order.
Check that the driver thread is running before making calls to
ISAF_N1.DLL
#define XMSG_PROGRAM_BUG 0x0000009AL

15

Intentional error reported when an unforeseen condition occurs. Report
to us in e-mail.

#define XMSG_CANNOT_OPEN_DLL 0x0000009EL

The driver thread cannot open the ISAF_N1.DLL using the
LoadLibrary API call. Check to see if the ISAF_N1.DLL file is present
in the DRV_DLL.DLL path search.
#define XMSG_CANNOT_GET_DLL_PROCESS_ADRESS 0x0000009FL

Can not get address of API call.
#define XMSG_GENERAL_NOISE_ERROR 0x000000A1L

Returned when some non-specific problem has occurred as calling API
SG100_Random with a Select range of zero.
#define XMSG_CPU_ERROR_TRAP 0x000000A3L

Some serious problem that cannot be identified.
#define XMSG_CPU_STACK_OVERFLOW 0x000000A4L

Some serious problem that cannot be identified.

If the small program, above, fails, check if Exception matches
any of the following system errors:
STATUS_WAIT_0 0x00000000
STATUS_ABANDONED_WAIT_0 0x00000080
STATUS_USER_APC 0x000000C0
STATUS_TIMEOUT 0x00000102
STATUS_PENDING 0x00000103
STATUS_GUARD_PAGE_VIOLATION 0x80000001
STATUS_DATATYPE_MISALIGNMENT 0x80000002
STATUS_BREAKPOINT 0x80000003
STATUS_SINGLE_STEP 0x80000004
STATUS_ACCESS_VIOLATION 0xC0000005
STATUS_IN_PAGE_ERROR 0xC0000006
STATUS_NO_MEMORY 0xC0000017
STATUS_ILLEGAL_INSTRUCTION 0xC000001D
STATUS_NONCONTINUABLE_EXCEPTION 0xC0000025
STATUS_INVALID_DISPOSITION 0xC0000026
STATUS_ARRAY_BOUNDS_EXCEEDED 0xC000008C
STATUS_FLOAT_DENORMAL_OPERAND 0xC000008D
STATUS_FLOAT_DIVIDE_BY_ZERO 0xC000008E
STATUS_FLOAT_INEXACT_RESULT 0xC000008F
STATUS_FLOAT_INVALID_OPERATION 0xC0000090
STATUS_FLOAT_OVERFLOW 0xC0000091
STATUS_FLOAT_STACK_CHECK 0xC0000092
STATUS_FLOAT_UNDERFLOW 0xC0000093
STATUS_INTEGER_DIVIDE_BY_ZERO 0xC0000094

16

STATUS_INTEGER_OVERFLOW 0xC0000095
STATUS_PRIVILEGED_INSTRUCTION 0xC0000096
STATUS_STACK_OVERFLOW 0xC00000FD
STATUS_CONTROL_C_EXIT 0xC000013A

17

Appendix A
A short description of program code to start a noise reading
thread follows. Declare variables to open the SG100 port and
the SG100 DLL_DRV library.

#include "DLL_DRV.H"
ulong Exception = 0;
HINSTANCE hLibrary = NULL; // handle to the library
Execute_Noise_Loop_P Loop= NULL;

The "Execute_Noise_Loop_P" is a type for a pointer to a function
taking an appropriate set of parameters. This enables compile-
time typechecking for C++ compilation. (It is, of course, of no
use if you don't use a C++ compiler.) We now open the driver
DLL and checks for a valid handle:

__try
{
 hLibrary = LoadLibrary("DLL_DRV");
 if (hLibrary != NULL)
 {
 Loop = (Execute_Noise_Loop_P)GetProcAddress(hLibrary,
 "Execute_Noise_Loop");
 char *Portname = "COM1"; // provide name in char * for
 DWORD Baudrate = 57600; // acceptable rate <= 100,000
 if (Loop != NULL)
 {
 (* Loop)(Portname, Baudrate);
 }
 FreeLibrary(hLibrary);
 hLibrary = NULL;
 }
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
 Exception = GetExceptionCode();
}

Note that the call (* Loop)(Portname, Baudrate) do not
terminate until the host application close or an explicit call to
”End_Noise_Loop” is executed.

18

To open the watchdog semaphore:

#include "DRV_DLL.H"
HANDLE WatchDog = NULL;
DWORD Retval;
/********
SEMAPHORE_ALL_ACCESS is defined in a system *.h file:
#define STANDARD_RIGHTS_REQUIRED (0x000F0000L)
#define SYNCHRONIZE (0x00100000L)
#define SEMAPHORE_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED|SYNCHRONIZE|0x3)

WATCHDOG is defined in Isaf_N1.h:
#define WATCHDOG __TEXT("WatchDog_Isaf001")
*******/
WatchDog = OpenSemaphore(SEMAPHORE_ALL_ACCESS, TRUE, WATCHDOG);

if (WatchDog == NULL)
{
 SECURITY_ATTRIBUTES sa; // security privileges for SEMAPHORES

 // fill out a SECURITY_ATTRIBUTES structure so handles can be inherited

 sa. nLength = sizeof(SECURITY_ATTRIBUTES); // structure size
 sa. lpSecurityDescriptor = NULL; // default descriptor
 sa. bInheritHandle = TRUE; // inheritable

 /* create the Semaphore */
 WatchDog = CreateSemaphore(&sa, 0, 100, WATCHDOG) ;
}
if (WatchDog == NULL)
{
 // Error condition.
}
Retval = WaitForSingleObject(WatchDog, 0);
Retval = WaitForSingleObject(WatchDog, 0);

The application periodically checks the WatchDog or a separate
thread is spawn to check the SG100:

// wait until disconnected
Retval = WaitForSingleObject(WatchDog, INFINITE);
// when returns the SG100 is disconnected

// check if disconnected.
Retval = WaitForSingleObject(WatchDog, 0);
if (Retval == WAIT_OBJECT_0)
{
 // when Retval == WAIT_OBJECT_0 the SG100 is disconnected
}

Additional API calls and information may be available in the
header files.

19

Appendix B
Example code, for an application that want to read noise, to
connect to ISAF_N1:
#include "ISAF_N1.H"
HINSTANCE MMF_Library = NULL; // handle to the library
ulong Error_Code;
ulong Exception;
Get_Noise_P getnoise;
DLL_Setup_P setup;
Release_UpdateLock_P updatelock;

MMF_Library = LoadLibrary("ISAF_N1");

if (MMF_Library == NULL)
{
 // Error, abort
}
getnoise = (Get_Noise_P)GetProcAddress(MMF_Library, "Get_Noise");
setup = (DLL_Setup_P)GetProcAddress(MMF_Library, "DLL_Setup");
updatelock = (Release_UpdateLock_P)GetProcAddress(MMF_Library,
 "Release_UpdateLock");

if (getnoise == NULL || setup == NULL || updatelock == NULL)
{
 // Error
}
// Setup the DLL
(* setup)(&Error_Code, &Exception);

if (Exception != 0 || Error_Code != 0)
{
 // Error
}
// For demanding applications release pending driver thread
// and read in fresh noise:
(* updatelock)(&Error_Code, &Exception);
if (Exception != 0 || Error_Code != 0)
{
 // Error
}

uchar Noise_Buffer[size];
ulong Bytes_to_read = number;

(* getnoise)(&Noise_Buffer, Bytes_to_read, &Error_Code, &Exception);
if (Exception != 0 || Error_Code != 0)
{
 // Error
}
else
{
 // Bytes_to_read bytes of noise written to
 // memory address (unsigned char *)(&Noise_Buffer)
}
FreeLibrary(MMF_Library);
MMF_Library = NULL;

20

	SG100 Developers Reference Guide��Contents
	General About the SG100 Security Generator
	The SG100 Hardware
	The Noise Driver Thread
	Buffers and Noise Processing
	SG100 Timers
	API Call for Reading Data
	Integrating SG100 in Applications
	SG100 Test Programs
	Sg100 API Calls
	List of Errors
	List of major error codes that apply to the SG100 drivers.
	Appendix A
	Appendix B

